1. 首页
  2. 金融科技

红杉资本:Generative AI,一个充满创造性的新世界

一类强大的新型大型语言模型正在使机器有可能以可信的、甚至有时是超人类的结果来书写、编码、绘画和创造。

人类善于分析事物。但机器可能做的更好。机器可以分析一组数据,并在其中找到模式,用于多种用途,无论是欺诈或是垃圾邮件的检测,预测你的快递的 ETA,还是预测下一步该给你看哪个 TikTok 视频,等待。它们在这些工作上变得越来越聪明。这样的机器被称为 "分析型 AI",或传统 AI。

但人类不仅擅长分析事物,也擅长创造。我们写诗、设计产品、制作游戏以及编写代码。直到最近,机器还没有机会在创造性工作方面与人类竞争(因为它们的行为被归为分析和死记硬背的认知劳动)。但是,机器才刚刚开始善于创造有意义和美丽的东西。这一新类别被称为 "生成型 AI",意味着机器正在生成新的东西,而不是分析已经存在的东西。

生成型 AI 正在不断改变,不仅只是更快、更便宜,同时也在某些情况下创造的东西可能比人类手工创造的更好。每一个需要人类创造原创作品的行业(从社交媒体到游戏,从广告到建筑,从编码到平面设计,从产品设计到法律,从营销到销售)都有可能被它们重新来过。某些功能可能会被生成型 AI 完全取代,而其他功能则更有可能在人类和机器之间紧密的迭代创造周期中茁壮成长,但生成型AI应该在广泛的终端市场中释放出更好、更快、更便宜的创造力。我们对此的梦想是,生成型 AI 将创造和知识工作的边际成本降至零,产生巨大的劳动生产率和经济价值,以及相应的市场容量。

生成型 AI 所涉及的领域(知识工作和创造性工作)覆盖着数十亿的工人。生成型AI可以使这些工人的效率和/或创造性至少提高 10%:他们不仅变得更快、更有效,而且比以前有更强的能力。因此,生成型 AI 有可能产生数万亿美元的经济价值。

为什么是现在?

生成型 AI 与更广泛的 AI 都有着相同的 "为什么是现在"的疑虑:更好的模型,更多的数据,更大的计算。这个类别的变化比我们所能捕捉到的要快,但也值得我们来概括性地回顾一下最近的历史,以便把当前的时刻也放在背景中。

浪潮 1:小型模型至上(2015 年之前)。

5 年多以前,小型模型被认为是理解语言的 "最先进的技术"。这些小型模型擅长分析任务,并被部署在从预测交付时间到欺诈分类的工作中。然而,对于普遍的生成任务来说,它们的表达能力还不够强。生成人类水平的写作或代码仍然只能是一个梦想。

浪潮 2:规模竞赛(2015 - 今天)

谷歌研究院有一篇里程碑式的论文(Attention is All You Need),描述了一种用于自然语言理解的新型神经网络架构,称为 transformers,它不仅可以生成质量上乘的语言模型,同时还具有更高的可并行性,需要的训练时间也大大减少。这些模型是少数的学习者,因此可以相对容易地针对特定领域进行定制。

- 星际资讯

免责声明:投资有风险,入市须谨慎。本资讯不作为投资建议。

下一篇:加密世界杯主题:粉丝代币、NFT 以及链游
« 上一篇
上一篇:以太坊基础设施Infura中心化问题再引争议,我们还有什么替代方案?
下一篇 »

相关推荐