零知识机器学习(ZKML)的应用和潜力
ZK 从 2022 年开始持续火热,其技术已经取得了很大的发展,ZK 系的项目也不断发力。与此同时,随着机器学习(Machine Learning, ML)的普及,也广泛应用于生产生活中,许多企业开始构建、训练以及部署机器学习模型。但目前机器学习面临的一个重大问题是如何保证可信度和对不透明数据的依赖性。这就是 ZKML 的重要意义:让使用机器学习的人完全了解模型而不需要透露模型本身的信息。
1. 什么是ZKML
什么是 ZKML,我们把它分开来看。ZK(零知识证明)是一种密码协议,证明者可以向验证者证明给定的陈述是真实的而无需透露任何其他信息,也就是说不需要过程就可以知道结果。ZK有两大特点:第一,证明了想证明的东西而无需透露给验证者过多的信息;第二,生成证明很难,验证证明很容易。基于这两个特点,ZK发展出了几大用例:Layer 2 扩容、隐私公链、去中心化存储、身份验证、以及机器学习等。本文的研究重点将集中在ZKML(零知识机器学习)上面。什么是ML(机器学习),机器学习是一门人工智能的科学,涉及算法的开发和应用,使计算机能够自主学习和适应数据,通过迭代过程优化其性能,无需编程过程。它利用算法和模型来识别数据得到模型参数,最终做出预测/决策。目前,机器学习已成功地应用于各个领域,随着这些模型的完善,机器学习需要执行的任务越来越多,为了保证高准确度的模型,这就需要用到ZK技术:使用公共模型验证私有数据或使用公共数据验证私有模型。目前我们所谈到的ZKML是创建 ML 模型推理步骤的零知识证明,而不是 ML 模型训练。
2. 为什么需要ZKML
随着人工智能技术的进步,区分人工智能和人类智能和人类生成变得更加困难,零知识证明就有能力解决这个问题,它让我们能够确定特定内容是否是通过将特定模型应用于给定输入而生成的,而无需透露有关模型或输入的任何其他信息。传统的机器学习平台,往往需要开发者将自己的模型架构提交给主机进行性能验证。这可能会导致几个问题:
- 知识产权损失:公开完整的模型架构可能会暴露开发人员希望保密的有价值的商业秘密或创新技术。
- 缺乏透明度:评估过程可能不透明,参与者可能无法验证他们的模型与其他模型的排名。
- 数据隐私问题:经过敏感数据训练的共享模型可能会无意中泄露有关基础数据的信息,从而违反隐私规范和法规。
- 星际资讯
免责声明:投资有风险,入市须谨慎。本资讯不作为投资建议。