1. 首页
  2. Meta

ZKML——迈向可验证人工智能的未来

背景

在过去的几个月里,人工智能行业出现了多项突破。 GPT4 和 Stable Diffusion 等模型正在改变人们生成软件和互联网以及与之交互的方式。

尽管这些新的 AI 模型具有令人印象深刻的功能,但一些人仍然担心 AI 的不可预测性和一致性问题。例如,在线服务领域缺乏透明度,其中大部分后端工作由 AI 模型运行。验证这些模型是否以预期的方式运行是一项挑战。此外,用户隐私也是一个问题,因为我们提供给模型 API 的所有数据都可用于改进 AI 或被黑客利用。

ZKML 可能是解决这些问题的新方法。通过将可验证和无需信任的属性注入机器学习模型,区块链和 ZK 技术可以形成 AI 对齐的框架。

什么是 ZKML

本文中的零知识机器学习(ZKML)是指在不暴露模型输入或模型参数的情况下,使用zkSNARK(一种零知识证明)来证明机器学习推理的正确性。根据隐私信息的不同,ZKML 的用例可以分为以下类型:

公共模型+私有数据:

  • 隐私保护机器学习:ZKML 可用于在敏感数据上训练和评估机器学习模型,而无需向任何其他人透露数据。这对于医疗诊断和金融欺诈检测等应用可能很重要。我们也看到一些玩家在生物特征数据认证上使用 ZKML 来构建人性证明服务。
  • 证明:在大多数在线内容由 AI 生成的世界中,密码学可以提供真相的来源。人们正在尝试使用 ZKML 来解决 deepfake 问题。

私有模型+公共数据:

  • 模型真实性:ZKML 可用于确保机器学习模型的一致性。这对于用户确保模型提供者不会懒惰地使用较便宜的模型或被黑客攻击可能很重要。

人工智能去中心化的 Kaggle:ZKML 允许数据科学竞赛的参与者证明模型在公共测试数据上的准确性,而无需透露训练中的模型权重

公开模型+公开数据:

  • 去中心化推理:这种方法主要是利用 ZKML 的简洁特性,将复杂的 AI 计算压缩到类似于 ZK rollup 的链上证明。这种方法可以将模型服务的成本分配给多个节点。

由于 zkSNARK 将成为加密世界的一项非常重要的技术,ZKML 也有可能改变加密领域。通过在智能合约中加入AI能力,ZKML可以解锁更复杂的链上应用。这种集成在 ZKML 社区中被描述为“赋予区块链眼睛”。

技术瓶颈

然而,ZK-ML 带来了一些当前必须解决的技术挑战。

- 星际资讯

免责声明:投资有风险,入市须谨慎。本资讯不作为投资建议。

下一篇:Avalanche 生态系统的繁荣:探索顶级项目和市场表现
« 上一篇
上一篇:如何评估“分叉版EVM”的安全风险?
下一篇 »

相关推荐